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Abstract

Controversy persists as to the role of occlusal overload in peri-implantitis. Animal studies have not revealed the
biological threshold for fatigue failure in the peri-implant bone. On the other hand, clinical studies have demonstrated
a link between parafunction and implant failure, although variables such as intensity and frequency of loads, as well as
bone density, have led to different outcomes. The absence of specific engineering “building codes” for the clinician has
relegated prosthetic design planning to intuitive guidelines for all patients. For example, higher crown to implant ratios
(2–3:1), implant cantilever prostheses and non-splinted restorative designs have been avoided because of the concern
for overload. However, evidence has not supported this general approach. A call for preclinical research to establish
specific patient load thresholds is in order to establish a customized treatment plan.

Introduction
According to the American Academy of Implant Dentistry,
500,000 dental implants are placed in the USA annually.
These numbers continue to climb despite the unknown
role of occlusion in the biological outcomes of osseo-
integrated implants [1]. Natural teeth that present with
initial occlusal discrepancies have demonstrated deeper
probing depths and poorer prognoses than those without
these discrepancies [2]. However, there are no controlled
studies that evaluate the effect of occlusion on implants in
humans, due to the fact that they would be countered to
the Helsinki accords [3]. What remains is an available body
of evidence that is broad and heterogeneous. What is
lacking is a study that would reveal the link between
specific mechanical loads and histological changes, to serve
as a guide to the clinician for implant prosthetic design
and occlusal therapy. It is known that the response to
increased mechanical stress below a certain threshold will
strengthen the bone by increasing the bone density or
apposition of the bone [4, 5]. On the other hand, fatigue
microdamage resulting in resorption of the bone may be
the product of mechanical stress above this threshold [6].
If this gradient could be defined for implant restorations, it
would clarify a topic in implant dentistry that has been
fueled more by dogma, expert opinion, and inferences

from concepts used for natural teeth [7]. The purpose
of this study is to review the current preclinical and
clinical literature on occlusal overload and its relation-
ship to peri-implant bone loss as well as establish the
need for future research.

Animal studies
Isidor [8–10] published a series of experimental studies
using four monkeys to compare the loss of the bone
around dental implants following an excessive load or
plaque accumulation. He used both machined and titanium
dioxide-surfaced implants. After 18months of loading, the
histological result showed that 6 out of 8 loaded implants
lost osseointegration. It was concluded that occlusal over-
load can be the main factor for bone loss for an implant
already osseointegrated. In agreement, Miyata et al. [11]
experimented with different heights of the superstructure
(100, 180, 250 μm) using the same breed of monkeys and
found increased bone resorption occurred with an excess
of 180 μm or higher after 4 weeks of loading.
However, Heitz-Mayfield et al. [12] using Labrador

dogs found no marginal bone loss due to excessive
occlusal forces. This study included six dogs and each
dog’s bilateral mandibular premolar and molar was
removed. After 3 months of healing, two titanium
plasma sprayed and two sandblast, large grit acid-etched
implants were placed in each side of the mandible in all
dogs. A split-mouth design was conducted with supra-
occluding crowns on the one side and on the other side
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unloaded. Plaque control was performed on all implants
throughout the experimental time. After 8 months of
loading, histology revealed that mineralized bone in con-
tact with the control and test surfaces was not statisti-
cally disparate, 72.6% and 73.9%, respectively.
Similar findings were reported by Kozlovsky et al. [13],

who performed a split-mouth design on Beagle dogs,
placing prosthetic abutments on implants, either in supra-
occlusion or infraocclusion. They found no loss of
osseointegration or marginal bone loss with non-inflamed,
occlusally overloaded prostheses on dental implants. In
fact, the authors demonstrated, in the absence of inflam-
mation, there was an increase in the bone to implant
contact when overloading the implants.
As is apparent, there are conflicting data in these

experimental studies which can be attributed to con-
founding variables such as differences in experimental
design, occlusal overload, and bone quality. Lateral
forces applied on the implant prostheses in dogs
could only be simulated by artificially created cusp
inclines of different types as dogs are unable to
perform lateral movements. Some researchers created
a lateral displacement on the supra-occluding cusp
where others created premature contact in centric
occlusion. Finally, different regimens of oral hygiene
were used and certainly could not preclude the pre-
sence of peri-implant inflammation.
Despite the conflicting evidence, two conclusions have

been drawn [7]. Precipitous bone loss from overloading
has been shown in a few investigations, but the majority
of the more recent animal studies has not replicated
these findings. Total loss of osseointegration of an in-
tegrated implant appears possible when the applied force
exceeds the biological threshold, but this limit is
currently unknown, and contingent on the bone quality
and possibly the level of inflammation. While it is
difficult to quantify the magnitude and direction of
naturally occurring occlusal forces, a number of clinical
studies may offer clues to appropriate implant/prosthetic
treatment planning to minimize peri-implant disease
and point to future research.

Clinical studies
Bruxism
Twenty percent to 35.9% of patients may generate forces
of such magnitude to cause microfracture of the bone
around dental implants with concomitant bone loss and
implant failure due to bruxism [14–18]. Of note, statistical
mediating factors are implant length, diameter, and sur-
face as well as bone quantity D vs. A (Bone quantity
relates to the bone volume present. Division A is the
height of the bone more than 10 mm. Division B is
more than 10 mm in height, but the width at the crest
is 2.5–5 mm. Division C is less than 10 mm in height

and width atrophied to less than 2.5mm. Division D is
severely deficient bone. Both Division C and D will require
augmentation procedures) and bone quality 4 in relation
to 1 (Bone quality relates to density present. Type 1 dense
bone provides great cortical anchorage but limited vascu-
larity. Type 2 bone is the best bone for osseointegration.
Type 3 and 4 bone have soft bone textures with the least
success of implant integration in type 4 bone) using
Lekholm and Zarb classification [15]. However, given a
population of 98 bruxers and matched non-bruxers,
considering these variables, the odds ratio of implant fail-
ure has been shown to be 2.71 in relation to non-bruxers
[16]. Furthermore, Chitumalla et al. [19] in a recent 5-year
retrospective study reported a survival rate of dental
implants with bruxism habit was 90% after 1 year, 87%
after 2 years, 85% after 3 years, 75% after 4 years, and 72%
after 5 years. Other investigators have corroborated the
link between parafunction and implant failure [20, 21].
This underscores the link between occlusal overload and
peri-implant disease and ultimately failure. It is likely that
forces applied to implants during bruxism are even higher
than those exerted onto natural teeth due to the decreased
proprioception of implants. The periodontal ligament of
natural teeth provides the central nerve system with feed-
back for sensory and motor control vs. the implant having
feedback from only distant mechanoreceptors and there-
fore lowers tactile sensitivity (8-fold!) [22]. Another reason
is that without a periodontal ligament, implant occlusal
loads are directly transferred to the bone leading to higher
forces to the supporting structure surrounding implants
and risk for bony microfracture (peri-implantitis), com-
pared to natural teeth.
In order to measure bite forces, the most widely

accepted recording device is the strain gauge bite force
transducer [23–28]. Mean bite force measurements in
bruxers have been shown to be 827 N with a standard
deviation of 620 N [29]. Bruxers generate both an
increased magnitude of force and a higher frequency of
tooth contact than non-bruxers [30]. Nishigawa et al.
[31] found that 790 N of force was on average generated
during bruxism and a mean duration of 7.1 s. Normal
masticatory loads have been described as being brief
in nature (0.23 to 0.3 contacts/s) at 1 to 2 Hz for a
total period of approximately 9 to 17 min per day
[32]. Pathologic overloading may also occur as a re-
sult of duration of contact. This can magnify loads
and stress leading to strain gradients exceeding the
physiologic tolerance threshold of the bone, causing
microfractures at the bone-implant interface. While
repeated single high loads can lead to failure and
cause microfractures within the bone tissue, continu-
ous application of low loads may also lead to fatigue fail-
ure [33]. The mineralized bone matrix has a mechanical
and biologic “memory” for previous stimuli [34].
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A microstrain level that is over 4000 is commonly
indexed as the threshold for bone fatigue failure [35].
This ceiling varies in accordance with high or low can-
cellous bone density models with former achieving
higher maximums. A high-density cancellous bone (850
Hounsfield units) and a low-density cancellous bone
(150 Hounsfield units) would be categorized as type 1
and 4 quality bone, respectively [36, 37]. At the same
time, intermittent bouts of 1000 to 3000 microstrains
have shown to have a stimulating, anabolic effect on
bone mass [38] . This has been explained by Frost [39].
He has identified osteocytes as an important part of the
cellular machinery of bone functional adaptation. When
the strain stimulus surpasses the homeostatic regu-
latory mechanism threshold, but is below the bone fatigue
failure, tissue level strains lead to fluid flow-mediated
osteocyte and dendrite perturbation and release of
anabolic factors. In turn, osteoblasts are recruited and the
bone is subsequently formed primarily on trabecular and
periosteal surfaces—effectively increasing whole bone
strength [40].

Crown to implant ratio
An example of this phenomenon is demonstrated with
implants that have a crown to implant ratios of greater
than 1 to 1. A number of investigators reported counter-
intuitive results when high clinical crown to implant
ratios (2–3 C/I ratio) did not have the expected catabolic
result, but instead caused an anabolic change in the
bone [41–44]. The use of short implants when there is a
significant interocclusal distance has similarly been
successful, even when compared to longer implants with
bone augmentation [45–47]. It also offers a methodo-
logical pathway to look at relative force/field units in the
anabolic/catabolic bone continuum and its tipping point
for peri-implantitis.

Implant cantilever prostheses
Another implant prosthetic design that has been assumed
to cause occlusal overload is the cantilever prosthesis.
However, systematic reviews and meta-analyses as well as
long-term follow-up studies of cantilevers in the partially
edentulous patients have demonstrated similar marginal
bone levels as the fixed dental prostheses without a canti-
lever [48–53]. This is irrespective of the use of a mesial or
distal cantilever [54]. However, there are limits dictated by
the design of the cantilever.
Non-axial forces on natural teeth are mediated

through the tensile loading of the principal fibers of the
periodontal ligament (PDL), and the occlusal load is
transmitted to the surrounding bone [55]. Non-axial
loads as in balancing interferences on the teeth have
been associated with the significant interproximal bone
loss [31]. With implants, the load is transferred directly

from the implant to surrounding bone through the anky-
losed root analog and adverse effects have not been
found to be as pronounced during non-axial loading
[56]. However, there are thresholds of non-axial forces
that have been shown to cause crestal bone loss around
implants. Duyck et al. [57] have shown that a transverse
force of 14.7 N applied on a distance of 50 mm from the
top of the implant results in a bending moment of
73.5 Ncm when repeated with 2520 cycles at a frequency
of 1 Hz causes crater like defects lateral to the osseo-
integrated implants. This may offer a threshold to
explain why fixed dental prostheses that are designed
with cantilever arms ≥ 8 mm have demonstrated mar-
ginal bone loss, leading to peri-implantitis [58].

Splinting
The use of splinting to decrease force magnitudes on
implant restorations and thereby protect against occlusal
overload leading to marginal bone loss continues to be
controversial. Vigolo et al. [59] conducted a 10-year split-
mouth design on 44 patients with splinted and non-
splinted implant restorations on the right and left
maxillary posterior quadrant, respectively. He found no
difference in crestal bone loss, despite that 17% of the
implants were placed in bone quality type IV. However,
notable to the patient cohort profile was the absence of
any bruxers. Naert et al. [60] treated a larger population
with 644 implants. Two hundred thirty-five were restored
with single crowns and 409 with a splinted prosthesis.
After a 16-year follow-up, 95.8% of all restorations sur-
vived. Statistical analysis showed no significant difference
in hazard rate between implant-supported single crowns
and those splinted by means of fixed prostheses. It was
also shown that neither restoration design, jaw site nor
implant position (anterior or posterior) had a significant
effect on bone loss [61]. Despite the fact that patients were
widely accepted for treatment, no data were reported on
the number of bruxers. While recommendations have
been made to splint crowns in patients with parafunction
[62, 63], no clinical or histological evidence has demon-
strated marginal bone response advantages.

Discussion
Treatment planning implant-prosthetic rehabilitation
should be dependent on a biomechanical algorithm cus-
tomized for each patient. Given the lack of a definitive
load-bearing analysis for bone supporting implants, an
empirical or intuitive dogma, based on a tooth model,
has proliferated in the clinical amphitheater. This has
led to a penchant for invasive and costly procedures
rather than more minimally invasive approaches. While
short implants (even with high crown to implant ratios) can
successfully override augmentation procedures, and implant
cantilevers can dependably reduce surgical exposure as well
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as soft tissue problems, and splinting may not be necessary
to maintain the marginal bone level; biases against
short implants, implant cantilevers, and non-splinted
units are replete and are not evidence-based. Despite
this so-called safe approach to implant treatment
planning, peri-implantitis is on the rise. Understanding
the role that mechanical stress and strain play in peri-
implant bone loss may change the tooth model as a guide
for implant prosthetic designs and assist in explaining why
peri-implantitis has been so prevalent.
This study is limited by the non-systematic nature of its

review. However, there are no randomized or prospective
human trials on occlusal overload due to the ethical
concerns in such methodologies. The way forward will be
in designing and conducting overload conditions in
preclinical experiments and using finite element analyses
to identify thresholds of bone microstrain for assessing
safe implant/prosthetic designs for our patients.

Summary
When the best available evidence is lacking in directing
clinicians in their treatment planning decisions with
implant restorations, a basic science approach can offer
clarity. The relationship between mechanical loading
and biologic consequences on bone response has been
established, but specific thresholds have not been corre-
lated to prosthetic design and occlusal scheme guide-
lines. The high ceiling of implant survival has clouded
the importance of dissecting why some implants fail. It
has been sobering, however, to note that as high as 20%
of all implant patients experience peri-implantitis, while
the impact of occlusal overload remains unknown.
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