REVIEW OF OPERATIVE DENTISTRY

Introduction to Operative Dentistry

Definition (3 parts)

1st part

Art and science of the DIAGNOSIS, TREATMENT, and PROGNOSIS of defects of teeth.

2nd Part

Treatment should result in the restoration of proper tooth form, function, and esthetics, while maintaining the physiologic integrity of the teeth in harmonious relationship with the adjacent hard and soft tissues.

3rd part

All of which should enhance the general health and welfare of the patient

Operative Dentistry also known as Restorative Dentistry or Conservative Dentistry

Indications for Operative Treatment

- Caries,
- Malformed, discolored, non esthetic, or fractured teeth,
- Wearing of teeth (attrition, abrasion, etc.)
- Restoration replacement or repair.

Pit and fissure caries

Rampant smooth surface caries

Crevical Abrasion

Attrition in Anterior Teeth

Fig. 1: Attrition Attrition in Posterior

Procedures

Procedures commonly done are

- Direct restoration Amalgam, Composite resin, GIC.
- Indirect restoration Inlay, onlay, crowns (base metal, precious metal, porcelain fused to metal, or metal free ceramic)
- Veneers Direct or indirect

Direct Restoration – After tooth preparation, the restoration is placed in a moldable stage in the prepared tooth to recreate normal contours.

Adv. – easy to place, less time consumed, and cost effective.

Disadv. – compromised mechanical properties

Indirect Restoration - After tooth preparation, it involves making of impression, pouring of cast, die preparation, wax pattern, investing, casting, finishing, polishing and cementing (or luting) of restoration. (restoration is fabricated outside and cemented to prepared tooth)

DISESES AFFECTING TOOTH STRUCTURE

What is Dental Caries?

What is Dental Caries?

Dental caries is a:

- 1) <u>chronic</u>
- 2) <u>site-specific</u>
- 3) <u>multifactorial</u>
- 4) <u>dynamic</u> (but not necessarily continuous)
- 5) <u>disease process</u> that involves the shift of the balance between protective factors (<u>remineralization</u>) and destructive factors (<u>demineralization</u>) to favor demineralization of the tooth structure over time.
- 6) The disease can be <u>arrested</u> at any point in time.

Etiology

Composition

Frequency

Amount

Agent

Plaque Quantity/Quality S. mutans Lactobacilli Other Bacteria

Principles of caries lesion classification

TABLE 1

Principal carious lesion classification criteria.*

CLASSIFICATION
D = decayed or caries lesions, M = missing owing to extraction, F = filled or restored caries lesions
Occlusal caries, smooth-surface caries and root caries
Primary caries, secondary (recurrent) caries
Acute caries, chronic caries, active caries and arrested caries
Incipient caries, advanced caries
Early childhood caries, adolescent caries, adult caries
Baby bottle tooth decay
Enamel, dentin, cementum

* Source: Fejerskov and Kidd.7

Principles of caries lesion classification

TABLE 1

Principal carious lesion classification criteria.*

CLASSIFICATION BASIS	CLASSIFICATION
Treatment of Caries	D = decayed or caries lesions, M = missing owing to extraction, F = filled or restored caries lesions
Morphology (Location of the Lesion)	Occlusal caries, smooth-surface caries and root caries
Prior Condition of the Tooth	Primary caries, secondary (recurrent) caries
Severity and Rate of Caries Progression	Acute caries, chronic caries, active caries and arrested caries
Extent of the Lesion	Incipient caries, advanced caries
Chronology or Age	Early childhood caries, adolescent caries, adult caries
Etiology (Causes or Origins of Caries)	Baby bottle tooth decay
Affected Tissues	Enamel, dentin, cementum

* Source: Fejerskov and Kidd.7

Black's Cavity Classifications

- Class I- involves a pit or fissure on a posterior or anterior tooth
- Class II- involves a proximal surface of a posterior tooth
 Takes precedent over a Class I
 - Generally, involves the occlusal surface also
- Class III- involves the proximal surface of an anterior tooth
- Class IV- involves the incisal angle of an anterior tooth
- Class V- involves the cervical third of a anterior or posterior tooth, generally on the buccal or lingual
- Class VI- involves any other situation that does not fit into I-V, generally cusp tip pits on canines and or molars

Cavity Classifications Class I Class II Class III # **31- 0**

4- 0 & 3 0-

29- MO

14 MO-

8- M

Cavity Classifications

Class IV

Class V

Class VI- anything else, generally cusp tip pits on canines or molars

ALTERATION OF TOOTH: various causes

- ACIDS- bulimia, lemons, etc.
- HORMONAL, AGE
- MEDICATIONS- tetracycline stain
- HABITS- wear, erosion, pin holding, etc.
- TRAUMA- fractures
- DEVELOPMENTAL
 - enamel hypoplasia, dentinogenesis imperfecta, amelogenesis imperfecta

DENTAL DEFECTS

- FLUOROSIS: "mottled enamel", form of enamel dysplasia
 - High fluoride uptake during enamel calcification
 - Teeth are resistant to caries
 - Brown stain, ca
 - Intrinsic stain

DENTAL DEFECTS

EROSION: acid or chemical induced

- Agent eats away enamel, dentin, and cementum
- Important factors:
 - Time factor: how long tooth in contact with acid
 - Location of acidic agent on tooth
- Some offending agents:
 - Acid: bulimia, lemons,
 - Carbonated beverages
 - In BULIMIA: lingual enamel gone

DENTAL DEFECTS caused by medications

Drug: tetracycline

- given to mother or infant
- teeth affected are the ones undergoing development at the time the drug is taken
 affects DENTIN

Primary and/ or permanent teeth affected

DENTAL DEFECTS

CERVICAL ABRASION of tooth structure

- May affect enamel, dentin or cementum
- Important factors: location and time
- Habits like toothbrush abrasion, pin holding, tooth pick use or holding, occlusion
- CLASS V LESIONS: NOTCHED APPEARANCE

POSSIBLE RESTORATIVE OPTIONS

- RECONTOURING: ENAMEL HYPOPLASIA
- BLEACHING: FLUOROSIS, ENAMEL HYPOPLASIA
- COMPOSITE RESINS OR GLASS IONOMERS: EROSION/ ABRASION LESIONS
- VENEERS, CROWNS: TETRACYCLINE STAINING, ENAMEL HYPOPLASIA, FLUOROSIS

Treatment of the Cavity Preparation Prior to Restoring

Remaining Dentinal Thickness (RDT)

Dentin

- Buffers the effects of cariogenic acids
- Insulates from temperature increases
- RDT is the single most important factor in protecting the pulp

< 0.5 mm RDT Significant pulp reaction

< 0.5 mm RDT Significant pulp reaction

- 0.5 mm RDT
 - 75% reduction

< 0.5 mm RDT Significant pulp reaction 0.5 mm RDT 75% reduction 1.0 mm RDT

90% reduction

< 0.5 mm RDT</pre>

- Significant pulp reaction
- 0.5 mm RDT
 - 75% reduction
- 1.0 mm RDT
 - 90% reduction
- 2.0 mm RDT= ideal
 Little pulp reaction

- Liners: cement or resin coating of minimal thickness (usually less than 0.5 mm) usually applied only to dentin cavity walls that are near the pulp to achieve
- 1. a physical barrier to bacteria and their products
- 2. to provide a therapeutic effect, such as an antibacterial or pulpal anodyne effect.
- 3. They also contribute initial electrical insulation.
- 4. Generate some thermal protection.

McCoy RB. Bases, liners and varnishes update. Oper Dent 1995;20:216.

Bases

- Materials to replace missing dentin, used for bulk buildup and/or for blocking out undercuts in preparations for indirect restorations. Cement bases typically 1-2mm.
- They are used to:
- **1. Provide thermal protection for the pulp.**
- 2. Supplement mechanical support for the restoration by distributing the stresses from the restoration across the underlying dentin surface.
- This mechanical support provides resistance against disruption of the thin dentin layer over the pulp during condensation of amalgam or cementation of indirect restorations.

DIRECT RESTORATIVE MATERIALS

- 1- AMALGAM
- 2- GIC
- 3- COMPOSITES

1- Dental Amalgam

DENTAL AMALGAM

- Dental amalgam historically an alloy of mercury, silver and tin
- Prepared by mixing liquid Hg with Ag-Sn alloy powder

DENTAL AMALGAM

Advantages

- fast, easy to place, inexpensive
- Iong history of use and longevity of service -15 years typical
- microleakage between tooth and amalgam decreases with time - self sealing
- relatively insensitive to operator skill
- very low risk of adverse patient response

DENTAL AMALGAM

- Disadvantages
 - non aesthetic
 - no bond to tooth??
 - slow hardening 8-24 hrs to reach 95% of final strength
 - corrosion products may discolor tooth structure
 - brittle material
 - although very low probability for allergic reaction to components; components constitute environmental and occupational hazard (Hg)

Properties of dental amalgam

- strong in compression
- weak in tension or bending
 - tensile strength ~ 20% of compressive strength
- a brittle material
- no adhesion to tooth structure
- very small dimensional change upon hardening
- high thermal conductivity compared to tooth (a metal)
- coefficient of thermal expansion 2.2X tooth

High Copper Amalgam

- a high-copper amalgam contains enough copper to eliminate the gamma-two phase. currently: 11 < Cu wt% <30</p>
- clinically amalgams with little or no gamma-two have shown better clinical performance and less marginal deterioration
- These observations support the use of high copper content amalgam alloys
- now called simply "high-copper alloys"

Delayed expansion of amalgam

 If alloy contains Zn and is contaminated with moisture during placement:
 Zn + H₂O → ZnO + H₂↑

Safety

mercury toxicity

- MSDS sheet for Hg
- Hg is a toxic heavy metal; high density; high surface tension; high vapor pressure
- use is being limited/eliminated in most areas - thermometers, antifungal agents
- mechanisms for toxicity
 - skin contact; ingestion; inhalation
 - acute/chronic
 - elemental/ionic/organo-metallic

2- Glass Ionomer restorations

- Water based (hydrophilic) Alumuno-silicate glass with high fluoride content which reacts with poly (alkenoic) acid.

Advantages of GIC Filling Materials

- They seal well, they bond both to enamel and dentine
 - (bond strength 6-12MPa < than dentine bonding agents).
- Place little stresses on tooth structure when setting
- Buffer acidic conditions in their vicinity
- Flouride release?

Disadvantages

- Esthetics, they are inferior to composites and not usually recommended for use in areas of significant esthetic concern
- Physical properties, limited strength and wear resistance.
- Dehydration and cracking during setting.

Conditioning The Dentine

- During the restoration of teeth where little or no cavity prep is required some sort of conditioning or cleaning is required since the tooth may be covered with a pellicle and other surface debris.
- The use of strong acids is contraindicated because they will cause exposure of the collagen network in dentine & reduce the bonding potential

Ses of glass ionom

- Restoration of free smooth surface carious is a second both enamel and root caries, they are considered the material of choice for the restoration of root caries.
- Erosion and abrasion lesions
- They can be used as cements, bases and

3- COMPOSITES AND BONDING CONCEPT

Acid-etch Technique

Michael Buonocore (1955) 85% phosphoric acid on enamel

- Acrylic resins
- Resin tags

Etchants

- Organic acids
 - maleic, tartaric, citric, EDTA, acidic monomers
- Polymeric acids
 - polyacrylic acid, copolymers
- Mineral acids
 - hydrochloric, nitric, hydrofluoric,
 - PHOSPHORIC ACID 37%, 35%, 10%
- Gel Vs liquid
 - Provides better control
 - Contains colloidal silica, polymer beads or cellulose thickening agent.

Enamel Etching

- Surface pretreatment
- Increases surface area
- Provides for mechanical retention to combat hydrolytic degradation of the adhesive joint
- Removes contaminants inaccessible to prophylaxis
 increased surface energy
- Dissolution rates within the hydroxyapatite structure vary greatly resulting in pits and pores being developed = differential etching
- Facilitates wetting and resin penetration into the microporosities; 10-20 microns.

Figure 13–2. Surface of etched enamel in which the centers of enamel rods have been preferentially dissolved by the phosphoric acid.

Figure 13–3. Scanning electron microscopy of tags formed by the penetration of resin into etched areas of enamel. The resin was applied to the etched enamel, and the enamel was then dissolved by acid to reveal the tags. \times 5000.

Dentin Etching

Heterogeneous

- <70% inorganic hydroxyapatite</p>
- >20% organic mainly Type I collagen
- 10% fluid
- Smear layer from mechanical preparation
- Tubules (0.5-1.5 µm in diameter) supply a continuous flow of fluid to the surface

Total Etch Fusayama - 1978

- 37% Phosphoric acid on enamel and dentin
 - Improved restoration retention
 - No increased frequency of pulpal damage
 - Widely accepted in early-mid 1990's
Dentin Etching

acids that remove the smear layer and plugs and remove significant amounts of mineralized tissue leaving an exposed collagen network.

Application time will vary with the condition of the tooth

Technique

- Most teeth are adequately etched with 15 seconds of acid exposure
- Deciduous teeth and teeth with fluorosis require longer times: - 2x

Technique

- Rinse thoroughly
 - 15 seconds
- Prevent contamination
 - Saliva
 - Blood
 - Oil or water in compressed air
- Contamination requires re-etching for 10 seconds

Technique

- Dry
 - When etching enamel only, air is used
 - Enamel surface should appear chalky white
 - When dentin is involved, blot dry with a cotton pellet to avoid dessicating the dentin
- Apply bonding agent

Adhesives (bonding agent)

- Hydrophobic dimethacrylate oligomers
 bis-GMA
 TEGDMA
- Initiator activator: Light activator/Organic amine. Catalyst in dual-cured systems.
- Fillers: May be up to 40 wt% filled
 - aids handling
 - increases bond strengths\
- fluoride
- antimicrobials
- glutaraldehyde

Enamel Bonding Agent

- Traditionally: bis-GMA TEGDMA resins
 - Relatively Hydrophobic in nature
 - Not used when dentin is involved
 - Orthodontic applications
 - Mechanism:

- Bonding to enamel occurs by micromechanical retention after acid etching
- Fluid adhesive constituents penetrate into the newly produced surface irregularities and become locked into place after polymerization of the adhesive.

Whatever system is used, it must be able to work on different types of tooth structure, enamel, permeable dentin and sclerotic dentin.

Whatever system is used, it must be able to work on different types of tooth structure, enamel, permeable dentin and sclerotic dentin.

Bonding to dentin

- The high water content in dentin represents an extra challenge for the establishment of an interdiffusion zone. To manage this problem, primers have hydrophilic components, such as HEMA, that wet dentin and penetrate its structure was used.
- The primer stabilizes collagen and facilitates the penetration of the bonding resins.

Bonding to dentin

- Primers contain solvents to displace the water and carry the monomers into the microporosities in the collagen network.
- During application of the primer, most of the solvent evaporates quickly. Thus several layers usually must be applied to ensure a complete impregnation.

Primers

Hydrophilic monomers HEMA, BPDM etc

- Acidic monomers in self-etching
 carboxylic acid or methacrylated phophates
- Solvent up to 90%
 - acetone
 - ethanol-water
 - primarily water

Hybridization of Dentin

hybrid zone A

layer of dentin that contains resin. Produced by etching and resin diffusion.

Nakabayashi showed

the acid demineralizes the dentin collagen fibers are exposed hydrophilic resins infiltrate the collagen bonding agent must be hydrophilic and hydrophobic

Hybridization of Dentin

hybrid zone A layer of dentin that contains resin. Produced by etching and resin diffusion.

Nakabayashi showed

the acid demineralizes the dentin collagen fibers are exposed hydrophilic resins infiltrate the collagen bonding agent must be hydrophilic and hydrophobic

Enamel/Dentin Adhesive Systems

Enamel/Dentin Adhesive development

Self-etch Classification #2

Composite

- A material composed of 2 or more constituents: dispersed phase and a matrix phase.
- The term resin composite refers to the cross-linked polymer matrix reinforced by a dispersion of inorganic fillers.

COMPOSITE CHEMISTRY

INDICATIONS OF DENTAL COMPOSITES

- 1) Class-I, II, III, IV, V & VI restorations.
- 2) Foundations or core buildups.
- 3) Sealant & Preventive resin restorations.
- 4) Esthetic enhancement procedures.
- 5) Luting
- 6) Temporary restorations
- 7) Periodontal splinting.

CONTRAINDICATIONS OF DENTAL COMPOSITES

- I) Inability to isolate the site.
- 2) Excessive masticatory forces.
- 3) Restorations extending to the root surfaces.

ADVANTAGES OF DENTAL COMPOSITES

- 1) Esthetics
- 2) Conservative tooth preparation.
- 3) Insulative.
- 4) Bonded to the tooth structure.
- 5) repairable.

DISADVANTAGESOF DENTAL COMPOSITES

- I) May result in gap formation when restoration extends to the root surface.
- 2) Technique sensitive.
- 3) Expensive
- 4) May exhibit more occlusal wear in areas of higher stresses.
- 5) Higher linear coefficient of thermal expansion.

Treatment of Grossly Carious Teeth

Treatment options for grossly carious teeth

Direct restorations

- · Amalgam (bonded, pin retaind, slot retained, and Amalgam foundation)
- · Composite (restorative material or foundation under indirect restorations).

Indirect restorations

- Indirect composite
- Inlays
- Onlays
- ³⁄₄ crowns
- crowns

Generally pins are placed whenever satisfactory retention and resistance forms cannot be established with other means of Retention such as undercuts, grooves, slots...

2. Slot retained amalgain

- A slot is a retention groove placed in dentine in a horizontal plane.
- It may be used in conjunction with pin retention or as an alternative to it.
- Slots are particularly indicated in short clinical crowns and in cusps that have been reduced 2-3 mm for amalgam
- More tooth structure is removed in making slots than pins.
- Slots are less likely to create microfractures, to perforate the tooth or penetrate the pulp.

Tooth preparation for slot retained restoration

- They are usually placed on any
- aspects of the preparation on the gingival floor 0.5mm axial to the DEJ.
- It may be continuous or segmented depending on the amount of tooth structure missing and whether pins are to be used or not.
- It should be at least 0.5mm in depth and 1mm long.

Retentive means for composite

should be place in

sound areas of

dentin to avoid

2. Slots

Grooves

- 3. Locks
- 4. Pins (not as esthetic as previou s enamel. options).
- 5. Wider bevels or flares on accessible enamel margins to increase the surface available for bonding
- 6. Using the root canals.

Teeth Discoloration etiology and diagnosis

Discoloration

Intrinsic

- located within the tooth
- accessible only by bleaching.

extrinsic

- located on the surface of the tooth
- most easily removed by external cleaning.

extrinsic Discoloration

- Poor oral hygiene (chromogenic bacteria).
- Dietary and environmental factors (tobacco use, coffee, tea, cola, chemical reagents, fumes or pigment aerosols).
- Saliva, mucin, plaque and blood pigments.
- Medications.

Pre-Eruptive Discoloration

- Tetracycline medication,
- •Endemic fluorosis.
- •Severe jaundice in infancy.
- •Porphyria.
- •Erythroblastosis fetalis.
- •Alkaptonuria.
- •Sickle cell anemia
- Thalassemia
- •Amelogenesis imperfecta.
- •Dentinogenesis imperfecta.

intrinsic Discoloration

Post-Eruptive Discoloration

- •Aging,
- •Microcracks in the enamel,
- Tetracycline medication,
- •Dental caries.
- Restorations
- •Thinning of the enamel layer

•Ingestion of chromogenic foods and drinks.

- •Tobacco use.
- •Medical situations and conditions.
- •Traumatic injury.
- •Idiopathic pulpal recession.

MICROABRASION INDICATIONS

- Superficial discolorations in enamel
- Permanent removal of stains 0.1-0.2mm deep.
- > Fluorosis stains/ Hypocalcified (white) spots.

MICROABRASION MECHANISM

- Physical removal through:
- STRIPPING action of acid (Plus oxidation)
- > ABRASIVE action of pumice.

NOTE: Combination of acid/pumice less destructive to tooth structure than abrasives alone.

MICROABRASION MIX IT YOURSELF" - 18% HCI

- > 36% hydrochloric acid (Pharmacy/chemical supply)- Mix 1:1 with distilled water = 18%
 HCI.
- Mix acid with flour of pumice apply by hand rubbing only- NO ROTARY APPLICATION.

MICROABRASION MATERIALS/PRODUCTS · COMMERCIAL PRODUCTS – 6-8 % HCl

PREMA – Premier Dental Products

> OPALUSTRE – Ultradent Products

USE EITHER HAND OR ROTARY

APPLICATION.

MICROABRASION RISKS

- EXCESSIVE REMOVAL OF ENAMEL.
- CHEMICAL BURNS/ SOFT TISSUE IRRITATION
- INCRESED ROOT SURFACE SENSITIVITY

INDIRECT RESTORATIONS

Metal-ceramic Restorations

- Became viable in the late 1950's
- Relatively long track record
- Reported survival rate of 94.5% after 5 years
 - Sailer I et al. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: Fixed dental prostheses. *Clin Oral Implants Res.* 2007 Jun;18 Suppl 3:86-96.

- Adaptation of the intaglio (internal) surface needs to be same as cast
- Metal strength and ductility compensates for brittle behavior of ceramic
- Mechanical properties suitable to support occlusion and FPD

Low wear of occlusal surface, risk of increased opposing wear – particularly with high-fusing porcelain

- No staining at M-C interface
- Reasonably conservative preparations

Esthetic Challenge

Masking the color of the dark metal coping

Significant problem: alloys with dark oxides

Cross-section of a metal-ceramic crown.

Alternative labial margin designs

- Subgingival labial margin
 - Periodontal concerns
 - Gingival recession
 - Excessive tooth reduction
- Supragingival labial margin
 - Hiding the metal collar

Mechanical and aesthetic considerations

To insure good esthetics and adequate strength, significant tooth reduction is required

Disadvantages of the metal-ceramic FPD

- More tooth reduction than all metal restoration
- Esthetics may be compromised by dark metal coping, particularly at labial margin
- Expensive to fabricate
- May be objectionable to patients who want metal free dentistry

Many m-c restorations fabricated with base metal copings, usually Ni-Cr.

- Allergic potential of Ni based alloys
- Noble metal m-c alloys often contain significant amounts of Pd
 - Some evidence for reaction of Pd alloys with gingival tissues.

All-Ceramic Restorations

- Provide the most esthetically pleasing restorations currently available
- Restoration of choice for anterior fixed restoration?
- Historically porcelain jacket crown was earliest esthetic fixed restoration
 - 1887: CH Land patent on Pt foil matrix technique for PJC

PJC

- high fracture incidence
- Suitable only for low stress applications
- Relatively poor marginal adaptation
- Difficult to fabricate
- Development of m-c system significantly reduced use

Approaches to improved ceramics
 Develop stronger ceramic materials
 Use a two material approach

- High strength, opaque core material
- Lower strength esthetic veneer porcelain
- Similar in principle to m-c system; has some of same disadvantages – masking core, tooth reduction needed for two layers

Stronger ceramics

Early dental porcelains were primarily

- feldspathic glasses (SiO₂) with small amounts of crystalline leucite
- McLean (1965) introduced alumina ceramic core material overlaid with feldspathic glass veneer.
 - Improvement over feldspathic porcelain but still limited to low stress applications
 - Problems with marginal fit
 - Difficult and expensive to fabricate
- Glass-ceramic composites
 - Dicor
 - High leucite content feldspathic porcelain IPS Empress

High lithium disilicate glass ceramics

Empress 2; e-max

Lithium phosphate glass ceramics

Empress Cosmo (ceramic posts)

Glass infiltrated alumina core ceramics

- In-Ceram Alumina
- In-Ceram Spinell
- In-Ceram Zirconia

Zirconium Oxide ceramics

- Lava
- Cercon
- BruxZir

Ceramic Structure Options

Feldspathic

VITABLOCS Mark II and Esthetic Line VITA TriLuxe

Leucite

IPS Empress and ProCAD Optimal Pressable Ceramic

Lithium disilicate IPS Empress 2 and e.max

Alumina
In-Ceram Alumina, Procera

Zirconia

In-Ceram Zirconia, Lava, Cercon

PORCELAIN VENEERS

Common Indications

- Discoloration
- Enamel Defects
- Diastema
- Multiple Resin Restorations
- Slight Malposition and Malformation

Contraindications

- Lack of enamel
- Deciduous teeth
- Excessive wear
 - Parafunctional habits (eg. nail biting)
 - End to end occlusion
 - No posterior teeth

Porcelain Veneer Anatomy

Etched enamel Bonding agent Resin cement Bonding agent Silane coupling agent Etched porcelain/ceramic

Figure 12.21 Various types of incisal preparation that have been described for veneers.

Fig 7-1. A classification for impression materials.

	AGAR	ALGINATE	POLYSULFIDE	CONDENSATION	ADDITION	POLYETHER		
	AGAK	ALGINATE	POLISOLFIDE	SILICONE	SILICONE	POLIEINER		
Elastic recovery (%)	98.8	97.3	96.9-94.5	99.6-98.2	99.9-99.0	99.0-98.3		
Flexibility (%)	11	12	8.5-20	3.5-7.8	1.3-5.6	1.9-3.3		
Flow (%)	—	—	0.4-1.9	< 0.10	< 0.05	< 0.05		
Reproduction limit (um)	25	75	25	25	25	25		
Shrinkage, 24 hours (%)	—	—	0.4-0.5	0.2-1.0	0.01-0.2	0.2-0.3		
Tear strength (g/cm)	700	380-700	2,240-7,410	2,280-4,370	1,640-5,260	1,700-4,800		
*See glossary for definitions of terms.								

Table 7-1. Properties of elastomeric impression materials*

© 2008 Quintessence Publishing Co, Inc. All rights reserved.

	AGAR	ALGINATE	POLYSULFIDE	CONDENSATION SILICONE	ADDITION SILICONE	POLYETHER
Preparation	Boil, temper, store	Powder, water	2 pastes	2 pastes or paste- liquid	2 pastes	2 pastes
Handling	Complicated	Simple	Simple	Simple	Simple	Simple
Ease of use	Technique sensitive	Good	Fair	Fair	Good	Good
Patient reaction	Tedious, thermal shock	Pleasant, clean	Unpleasant, stains	Pleasant, clean	Pleasant	Unpleasant, clean
Ease of removal	Very easy	Very easy	Easy	Moderate	Moderate	Moderate to difficult
Working time (min)	7-15	2.5	5-7	3	2-4.5	2.5
Setting time (min)	5	3.5	8-12	6-8	3-7	4.5
Stability	1 h at 100% RH	Immediate pour	1 h	Immediate pour	1 w	1 w kept dry
Wetting and ease of pouring	Excellent	Excellent	Excellent	Fair	Fair to good	Good
Die material	Stone	Stone	Stone	Stone	Stone	Stone
Electroplating	No	No	Yes	Yes	Yes	Yes
Disinfection	Poor	Poor	Fair	Excellent	Excellent	Fair
Comparative	Low	Very low	Low	Moderate	High to very high	Very high

Table 7-3. Handling properties of elastomeric impression materials*