
Local anaesthesia

Dr.ahmad Mustafa al tarawneh
OMFS, KHMH

COMERCIALLY PREPARED LOCAL ANESTHESIA CONSISTS OF:

- Local anesthetic agent (xylocaine, lignocaine 2%)
- Vasoconstrictor (adrenaline 1: 80,000)
- Reducing agent (sodium metabisulphite)
- Preservative (methylparaben,capryl hydrocuprienotoxin)
- Fungicide (thymol)
- Vehicle (distillde water, NaCl)

Structure-Activity Relationships

All local anesthetics contain 3 structural components:

- an <u>aromatic ring</u> (usually substituted)
- a <u>connecting group</u> which is either an <u>ester</u> (e.g., novocaine) or an <u>amide</u> (e.g. lidocaine)
- an ionizable amino group

Chemical structure of local anesthetics

Chemical structures of prototypical <u>ester-</u> and <u>amide-type local anesthetics</u> – comparison with <u>cocaine (note 3 structural components of procaine)</u>

$$H_2N$$

procaine/novocaine

lidocaine/xylocaine

cocaine

Structure-Activity Relationships:

Two <u>important</u> chemical properties of local anesthetic molecule that determine activity:

Lipid solubility: increases with extent of substitution (# of carbons) on aromatic ring and/or amino group

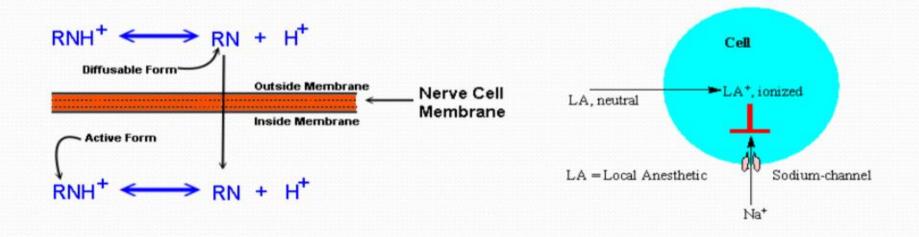
<u>lonization constant</u> (pK) – determines proportion of ionized and non-ionized forms of anesthetic

<u>Lipid solubility</u>: determines, potency, plasma protein binding and duration of action of local anesthetics

	Lipid solubility	Relative potency	Plasma protein binding (%)	Duration (minutes)
procaine	1	1	6	60-90
lidocaine	4	2	65	90-200
tetracaine	80	8	80	180-600

Local anesthetics are weak bases – proportion of <u>free base</u> (R-NH₂) and <u>salt</u> (R-NH₃⁺) forms depends on pH and pK of amino group

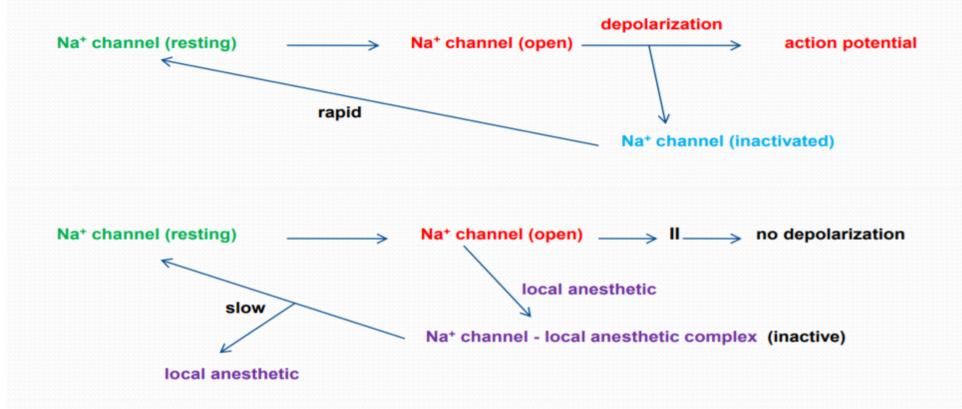
$$pH = pK + log [base]/[salt]$$


(Henderson-Hasselbalch equation)

Example: Calculate the proportions of free base and salt forms of tetracaine (pK = 8.5) at pH (7.5).

•• there is 10x more drug in the ionized than in the non-ionized form at physiological pH

Both free base and ionized forms of local anesthetic are necessary for activity:


local anesthetic enters nerve fibre as neutral free base and the cationic form blocks conduction by interacting at inner surface of the Na⁺ channel

Local anesthetics with <u>lower pK</u> have a <u>more rapid</u> <u>onset of action</u> (more uncharged form \implies more rapid diffusion to cytoplasmic side of Na⁺ channel)

	рK	% free base at pH 7.4	Onset of anesthesia (min)
lidocaine	7.9	25	2-4
bupivacaine	8.1	18	5-8
procaine	9.1	2	14-18

Mechanism of Action

Functional consequences of Na⁺ channel blockade by local anesthetics:

- nerves: decrease or abolition of conduction
- vascular smooth muscle: vasodilatation
- <u>heart</u>: decreased excitability (reduced pacemaker activity, prolongation of effective refractory period)
- central nervous system: increased excitability, followed by generalized depression

Effects of local anesthetics on nerve conduction

- Na+ channels are present in <u>all</u> nerves and local anesthetics, at sufficient concentrations, can <u>completely</u> block action potential generation and conduction
- "differential nerve blockade" nerve fibres differ markedly in their susceptiblity to conduction blockage by local anesthetics (this is the basis of their clinical use)
 - e.g., small, non-myelinated neurons mediating pain are much more susceptible that large, myelinated fibres mediating motor functions

Effects of local anesthetics on vascular smooth muscle

Blockade of Na⁺ channels in vascular smooth muscle by local anesthetics **>** vasodilatation

consequences of vasodilatation:

- enhanced rate of removal of anesthetic from site of administration (decreased duration of anesthetic action and increased risk of toxicity)
- <u>hypotension</u> (may be intensified by anestheticinduced <u>cardiodepression</u>)

Effects of local anesthetics on vascular smooth muscle

Anesthetic-induced vasodilatation can be counteracted by the concomitant administration of a vasoconstrictor

consequences of including vasoconstrictor:

prolongation of anesthetic action

decreased risk of toxicity

decrease in bleeding from surgical manipulations

Effects of vasoconstrictors on local anesthetic duration

Adrenaline is the conventional vasoconstrictor included in commercial local anesthetic preparations

The <u>concentration</u> of adrenaline in these preparations can vary and is expressed as <u>grams/ml</u> (e.g. 1:100,000 = 1 gram/100,000 ml)

local anesthetic	adrenaline	duration of anesthesia (min)
lidocaine (2%)	-	5-10
lidocaine (2%)	1:100,000	60
lidocaine (2%)	1:50,000	60

Effects of local anesthetics on CNS

- As is the case with CNS depressants generally (e.g., alcohol) local anesthetics (at toxic doses) produce a biphasic pattern of excitation followed by depression
- The <u>excitatory</u> phase likely reflects the preferential blockade of inhibitory neurons and effects can range from mild hyperactivity to convulsions)
- The subsequent <u>depressive phase</u> can progress to cardiovascular collapse and even death if unmanaged.

Applications of local anesthesia:

- <u>nerve block</u>: injected locally to produce <u>regional</u>
 <u>anesthesia</u> (e.g., dental and other minor surgical procedures)
- topical application: to skin for analgesia (e.g., benzocaine) or mucous membranes (for diagnostic procedures)
- <u>spinal anesthesia</u>: injection into CSF to produce anesthesia for <u>major surgery</u> (e.g., abdomen) or childbirth
- <u>local injection</u>: at end of surgery to produce long-lasting post-surgical analgesia (reduces need for narcotics)
- <u>i.v. infusion</u>: for control of <u>cardiac arrhythmias</u> (e.g., lidocaine for ventricular arrhythmias)

Nerve block by local anesthetics

- most <u>common</u> use of <u>local anesthetics</u> (e.g., dental)
- order of blockade: pain > temperature > touch and pressure > motor function recovery is reverse (i.e., sensation of pain returns last)
- recall: onset of anesthesia determined by pK, duration increases with lipophilicity of the anesthetic molecule
- recall: concommitant use of <u>vasoconstrictor</u> → <u>prolongation of anesthesia</u> and <u>reduction in toxicity</u>
- <u>inflammation</u> → <u>reduced</u> susceptibility to anesthesia (lowered local pH increases proportion of anesthetic in charged form that cannot permeate nerve membrane)

local anesthetic toxicity

most **common** causes:

- inadvertent <u>intravascular</u> injection while inducing nerve block (important to always <u>aspirate</u> before injecting!)
- rapid absorption following spraying of mucous membranes (e.g., respiratory tract) with local anesthetic prior to diagnostic or clinical procedures

manifestations of local anesthetic toxicity: allergic reactions, cardiovascular and CNS effects

local anesthetic toxicity (cont'd)

- allergic reactions: restricted to <u>esters</u> metabolized to allergenic p-amino benzoic acid (PABA) (∴ <u>amides</u> usually preferred for nerve block)
- cardiovascular: may be due to anesthetic (cardiodepression, hypotension) or vasoconstrictor (hypertension, tachycardia) ∴ monitor pulse/blood pressure
- CNS: excitability (agitation, increased talkativeness may → convulsions) followed by CNS depression
 (∴ care in use of CNS depressants to treat convulsions may worsen depressive phase convulsions usually well tolerated if brain oxygenation maintained between seizures)

THANK YOU